T d0-0)
MOdTY do
L

Coop Report: Working at the Jet Propulsion Laboratory X
By Amalaye Oyake, }:CSE Coad P e
Rensselaer Polytechnic Institute, Troy NY ¢, ¢ "‘(~ | |-

This is a summary of my co-op experience in 1994. | am a third year student of
the Rensselaer Polytechnic Institute in Troy NY, My najor is Electrical and Computer
Systems Engineering, and my co-op experience with the Jet Propulsion Labs (JPL),
was my first co-op tour,

January 10th marked my first day as an employee of JPL. Over the last eleven
months | have had the opportunity to be involved in various jobs, | have also had the
opportunity to undergo training. This report will describe my basic tasks, major jobs,
opportunities for learning, and other significant events that occurred during my co-
op tour.

Basic tasks cm the job;

My primary area of work is with the Measurement Technology Center group,
of Section 351. This group provides the JPL. community with solutions in-data
acquisition, instrument control, and data analysis. The Manager of the MTC is Dr.Ed
Baroth, and | worked on projects that were tasked out.

The first task | was given, was to review of a paper describing the
programming paradigms used by LabVIEW 3.0, a data acquisition toed developed by
National Instruments. | had to describe what object oriented features LabVIEW
possessed, and the ways it is not object oriented. With the assistance of Mr. Chris
Hartsough, 1 was able to complete this review. During the same week, | was able to
assist Clyde Sydnor, in his reports on low pass filter clesigns.1assisted Mr. Sydnor in
using Frame Maker, to create his reports, as well giving in input in optimizing the
filter design.

Other basic tasks I was involved with in the M'TC, was the challenge of
learning new software tools on demand, giving Friday morning demos to customers
searching for data acquisition solutions, and managing the resources of a Macintosh
Quadra AV.

Major jobs during my c0-0Op tour:

During the year, | worked on some major engineering projects. These jobs
included; the end to end test of the NASA Scatterometer, Performing a static Test on
the Cassini RTG, Evaluating Prograph CPX, Evaluating, various simulation packages,
Demonstrations for Ms. Denise Pateros, Dr. Charles Elachi, and a demo for the National
Alliance of Black School Educators. In support of the MTC, | have written several
papers; these include “Porting LabVIEW Code Betweer Platforms", “Visual
Programming with Prograph CPX", as well as creating a report for Mike Shumate's,
structural analysis work.

A brief outline of these projects is as follows;

a. The NASA Scatterometer project: | assisted Mr. Phil Yates on the NASA
Scatteromter project, an instrument that will monitor sea conditions from the ADEOS
satellite. The test involved was an end to end test, which involved simulating the
actual return signal. | was able to gain some experience using wave guides, function
generators, and microwave generators. Working cm this job taught me important
safety tips, while working with microwaves.

b. The Cassini RTG Static Test: On this project, | performed a static test on
the Cassini Radioactive Thermal Generators, under the supervision of Mr. Doug Clark,
with the assistance of Consuela Hargrove. In this expreriment a mass model of the RTG
was subject to various physical constraints, such as heating and tension, and
readings were taken along the mass model of the various temperatures at different
points, as well as the stresses using strain gauges. My task was to design a virtual
instrument, to record all relevant data, creating files and real time charts and graphs
of the incoming data. Fig 1. shows the front panel of the program. The Front panel
represents the user interface between the hardware and the operator. The core code
was written in about three days using National Instruments LabVIEW 3.01, on a 486
Pc.

R 5y

e [ED-(G)

fig 2. sample LabVIEW 3.x code

3

C. Product Evaluations: An ongoing task that | performed through out the year
was the evaluation of various simulation packages and new development packages.
Among these were Prograph CPX, BuildSim, and G2. Prograph was a product that was
actually purchased by the Measurement Technology Center. While evaluating
Prograph CPX, | wrote small applications, demonstra ting its capability in the area of
Data-acquisition. Prograph uses a visual syntax, thus there is textual code, except in
the naming of the various visual objects. Fig 3. shows the visual code, Fig 4 shows the
calculator implemented by this visual code.

Puysh Button
@ Z’r‘;m"g Clearfj}n gjﬁﬁ;j'“' 2
T *
Diit Operator = clear A~\ —T 1.1.‘
? -

A«Push Button>> implements the Z{j};in' ;:

standard Macintosh Push EButton 2y

Control. V‘_‘_-Q_,“VJQ,W,, 3>

Decimal Z’S,{ﬁ!ﬁlﬂ!ﬁ be

A default «Push Button>> in a

«Window > responds when the user
presses the Enter of Return key. A A T

fig 3. the visual code of Prograph CPX

==== MTC Calculator =i
MTC Calculator

]
DG
(D))
)
SIOISION.
Lclear][offJ

fig 4. the calcula [or application

d. Official Demonstrations: At various times representatives from different
Sections or Divisions on the Lab, representatives fron: industry, representatives from
specific interest groups, and specialized organizations, visit the MTC. The visual
programming tools and the relationship to the object oriented paradigm are areas
usually discussed. Other demonstrations include the integration of software and
hardware instrumentation. 1 have had the opportunity to give demonstrations to Dr.
Charles Elachi, Director of the Space and Earth Science Programs Directorate; The
National Alliance of Black School Educators (NASBE); Denise Pateros, Associate Dean
of Undergraduate Admissions, Rensselaer Polytechnic Institute.

0 ities for | ing:
4 Training opportunities have been available within my section. While on co-op
I have learnt how to use several tools. The most important however have been
LabVIEW 3.x and Prograph CPX. From Oct.17 to Oct. 21, I attended a Fundamentals of
Prograph CPX class, in Redwood City California. I have also attended numerous
National Instruments seminars at JPI.

O l - _S. .-[.- EV:]IS'

During my co-op tour | had the chance to visit the following aerospace
facilities; Vandenberg AFB, Edward’s AFB, The Palomar Observatory, The Space Craft
Assembly Facility at JPL, The Goldstone Antenna Range as well as other on lab
scientific sites, such as the Micro-devices lab.

i\

REPORT FOR
MIKE SHUMATE
STATIC LOADING TEST

JUNE 15th 1994 o %A-mm

MTC 3510
ref: Amalaye Oyake - MS 12.5-177

Static Loading of LIDAR on Rails

l §é 90.5 —-@-—-—-———b]

- 19.11-A

T T 25371 <Cg.> 7

poo 224710900 oo g

Tota floor loading = 2547.1- 537.8+108.7- 2118.0

Loading per inch on rails 2%20 =29.0 Ib/in

Dynamic Loading on Tahs and Floor Attatchements

— 90.5 —>l‘

RTEEU |
1 | 19.19 Jes

15.26 barCeNter to
I member center

[(90.5)= 9(2547 .1)(7.66)-2547.1(19.11)

I =1402

Total effect on l.oad at O:

Horizontal = 9(2547.1)6.~ 22924

Vertical = 2547.1 + 1402 + 108.7% 4058

From symmetry, we need to only look at one bay

assume 111=H2 113 -114624_ 3821

let R2 =12 be a redundant Force, consider vertical loading only.

- 90.5 -
I I
| I I
'Y

7.66 |

1 | 19.11 —=|
o - ¥y
] ST |
| II | l
/ o T \ | 15
| | ! i

8 bar center to
member center

B 1 e

| | 108.7 N
_ _ \T)
ﬂ ["
L a7 I D
| | |
B81F:+ Fa+.391F = 2029
924 F3+=.920F,
Fa=.924F
Fs=.920F R =1001-.442F, R, = 1001-.4427,
Fi=2634 --1.3F> R =1029-.508F, R = 1029 -.508F,

F3-2622 -- 1.29F"
Fa-2423 —1.19F"
Fs=2423-1.19IF"

TAEU = [(2622 + 3F,)(39.1) + (2622 - 1.29F,)(40.3)
+15(15.28)+ (21/23 —1.19 F,)*(73)]

du 0o 1.3(39.1)(2634 - 1. 3F,)- 1.29(2622 -1.291’,)(40.03+ 15.28F,)

oF, " —1.19(2923-1.19 F,)(73) =0
479,769 = 251.8 F,; F, =1909 == K,

R =618
R = 58.2

Assume pivot about A;
R/ = R'=R;R(73) = 11,462(1 8.53)" ; R = 2909

* pivot about pin.

at pin:

position F, Fz

1 3821 2848
2 3821 -1909
3 3821 -2967

Pin leading on Tab.
Pins are loaded in double shear.

Frow = [3.821°-t 2.967°]"10"=4838Ib
Fg .. = fady, . a=pin radius - %6 , W= Tab wj(uh:3/8
1%

4, = max. bearing stress (sine dist.)
+q,= 43.8 hsp’ (less than bearing allowable, so 0.k.)

Porting Labview Code Between Platforms

By

Amalaye Oyake, Member Tec hnical Staff”
Jet Propulsgon L?boratory, (California Institute of Technology
W Aevia BN N PR CTRNAN

Abstract

The Measurement Technology Center, provides solutions to various scientific
and engineering tasks that are encountered at JPL.The need to be able to quickly
produce software applications for data acquisition, ciata analysis and visualization,
has been an important focus. Using Labview as a tool to tackle such problems has
been very successful. However, an important probler n has presented itself in trying
to provide our services quickly and easily to the JPL community. This problem has
been the various kinds of computer platforms that exist and support Labview, and
how to port Labview between these platforms. Currently Labview runs on the
following platforms:

- Mac 11 and Quadra series

- Windows 3.x series of computers (386 or greater)
- The Sun Spare series

- The HP 9000 Series 700 (HP 745i)

- Windows NT

A problem has been the difficulty migrating from Labview 2.X to Labview 3.X. This
has become important, because for different reasons a given Labview application
will need to run on a 486 PC running Windows as well as a Mac Quadra.

What this paper looks at is a case study: Porting the DEMO BOX application from
Labview 2.2 on a Mac to Labview 3.1 b on a HP 745i

Introduction
Performing this task required the following steps:

1) Loading and saving the code under labview 3.1 (Mac)

2) Rewriting the 6b Serial Port Init sub-vi.

3) Ftp'ing the code to the HP 745i

4) Loading and re-saving all the code in Labview 3.1 b on the HP 745i
5) Reloading all sub-vi’s

6) Rewriting the string-to-boolean array sub-vi

7) Running the code

Loading and saving the 2.2 code under Labview 3.1 (Mag):

This step was necessary, so as to preserve the core Labview code. There is no
guarantee that L.abview 2.2 code can be loaded into Labview 3.x versions on a system
other than a Mac. Thus, without modifying the files or the code, the demo box
application was loaded and re-saved under lLabview 3.1 using “save as”, to protect the
original files.

Rewriting the 6b Serial Port Init sub-vi;

Labview 2.2 handles serial port initialization differesitly than lLabview 3.1. Thus, the
serial port initialization code on Labview 3.1 had to be rewritten to account for this.
This one major hurdle when porting any 2.x. application to a I.abview 3.x. The code
for port initializations is now standardized across all platforms inlLabview 3.x.

Ftp'ing the code to the HP 745i; "

Once all the code has been saved under Labview 3.1 on the Macintosh, a means of
transferring it to the HP 745i must be found. The best way to/{éﬁs is by using ftp. NCSA
Telnet 2.5 is recommended for doing it from a Mac, or save tle code to a PC formatted
floppy (using Apple File Exchange), and {tp it from a. PC based nctwork for example:

PC-486> rtp amaretto.jpl.nasa.gov

220 amaretto FTP server (Version 1.7.193.3 Thu Jul 2218:32:22 GM7T 1993) ready.

Name (amaretto: aoyake)

331 Password required for aoyake.

Pass word:

2.20 User aoyake logged in.

ftp> binary

200 Type set to |

ftp>

(figure 2. example ftp commands)
Note! always use binary transfer

lLoading and re-saving all the code in Labview 3. 1b on_the 1P 745i;

The code must then be reloaded into Labview 3.1 b on the HP 745i.1.abview will start to
look for all the associated sub-vi's. 1 abview must be told to ignore the search, since it
will it look for the sub-vi’s in the locations they existed on before the port, which

will not exist on the new machine. This problem is usually caused by the file naming
conventions of each independent operating system; {tp or any file transfer method

will result in some reformatting or truncation of the file name when moving

between the Mac, DOS, or UNIX systems

Broken arrows may mean, missing sub-vi’s within the sub-vi, which is not a problem
since these can be manually reloaded also.

Reloading all sub-vi’s:

Once the code has been saved under Labview 3.1 b, all the sub-vi’s must be reloaded

into respective positions. A missing sub-vi will appear as a question mark, within a
frame. Using the corresponding mouse clicks, it must be replaced with itself, using °
the “replace” option. Replacing a sub-vi by itself involves finding if's file, since

during an ftp process the file’s name might have changed slightly, and it would not

be in a directory where Labview would think it is. This process must be repeated for

all missing sub-vi's.

o)
(figure 3. a missing sub-vi)

P —

Rewriting the string-to-boolean array sub-vi;

“String to boolean array” does not exist in Labview 3.x on any platform. However, it
does exist in Labview 2., and is an integral part of the demo box application. It had to
be rewritten (see diagram below)

string > E20)) boolean array [l -
[String Boolean Array]
[Ciec]] [7F]

String To Boolean Array

(figure 4, the function ancl the sub-vi “string to boolean array”)

Running the code:

Once the code has been completely ported and there are no longer any broken
arrows, the application must be tested. Sometimes an application will not run due to
the fact that sometimes a given hardware platform will impose it 's behavior on the
operation of software code. For example, to assume that serial ports behave the same
on the HP 745i as the ports on a IBM compatible system is a mistake. Although it is a
safe assumption, it could have easily not been the case. In the case of the demo box,
the only two hurdles were rewriting the “serial port init" and the “string to boolean
array”

Conclusion

When porting Labview from different platforms, obey the guidelines listed
above, and always be wary of functions omitted from lLabview 2.x. It is a fairly simple
task to port the applications, however, it does take time and patience, and a fair
knowledge of the Operating Systems you are moving across. The demo box application
behaved very well while being ported from the Mac Quadra 950 to the
HP 745i. There was not any difference in front panel colors, and all the user objects
maintained their respective places on the screen. National instruments maintains a
stringent programming format, consistent across all platforms running Labview.

This makes it a very well;\behaved system if one wisl es to develop similar scientific
or data-acquisition applications for different platforms.

__2’

Veather Contre

Maximam Temperature *C
iiso 00 i

Traffie Contrel

Input Veltagel

bow]
Mo Temgeratore °c Qe
e] O -
Lﬁj Heater On’J E“Ei‘@

Temperature Histery| 0-C Velts] mmater|
00~ | -
300- 40 60
400- | z'oij“_ 80
300 ‘ 090 4\\} 00
20.0- | . R

L

[

SR

TR

trors onf @ BEEE_ TRed Tamer (ricke

remow Tamer (Ticks)

" Green Timer (Tioks)

1200
|00 1600

2000

Notes ontheDemoBox;

The demo box is a demonstration of a control and data acquisition system. Labview
controls a “traffic light” setup, and a heater, and also reads temperature, resistance

and voltage data.

It was originally designed on Labview 2.2 on a Mac lifx, and for the purpose of this

(figure 1. the demo box application)

report, was ported to a HP 745i.

A completely visual Object Oriented Programming (OOP) language
An editor/interpreter with a built in debugger

A GUI builder r

An Integrated database engine

Support SQI. databases

A 680x0 compiler

Support for integrating C libraries into Prograph applications

Introduction

The Prograph language is a very good implenientation of several modern
paradigms in computer science such as data flow, OOP properties like inheritance
(only single heritance is supported) and polymorphism. It@ a provides a pictorial
programming format, textual syntax is absent, text appearing only in comments, and
naming methods and classes. Reusability of code is part of programming in this
language, which is simply a matter of cutting and pasting the code. The
editor/interpreter, coupled with the compyler provide a very friendly programming
environment, It allows you simultaneously; treate and edit your application, thus
removing any subsequent bugs that may appear in an application.

The Measurement Technology (enter (MTC) is concerned with providing the
JPL engineering and scientific research community with tools and solutions in data
ach|S|t|on instrument monitoring and control, as well as data analysis and display.
[neccessary to have the capability to provide these solutions as quickly as the
emand requires. Traditional software solutions in these areas usually involve
languages such as BASIC, C or C++, anti require the programmer to design everything
from the user interface to the essential data acquisition code.

To solve complex problems and to meet the demands of engineers and
scientists, it has been demonstrated over time that visual programming tools can
provide a quick and easy way to achieve the objectives of a project. These
applications developed have met the requirements of the respective clients. For
further reference see MTC Tasks, Ott 14th 1994.

In the MTC, the visual programming tools of choice have been Labview 2.x and
3.x versions by National Instruments, and HP-VEE by Hewlett Packard. As seen by the
completed tasks list most of the jobs have involved mostly Labview, although there
have been a few HP-VEE jobs.

The need to diversify, and add other visual programming tools is one of the
areas being looked at by the MTC. Prograph was presented as a possible tool that could
be used within the MTC. It is more general purpose that Labview, however it does
allow additions to it's capabilities by the user, third parties, via C and Pascla code ,,
conversion tools. * "i oo d

David Prue of Acme Mining and Software inc. MD, has developed code that
allows one to perform data acquisition from National Instruments Boards, and he
provides a set of primitives implementing the basic NI-DAQ funct ions. Along with
these external primitives, Prograph Int. itself provides a robust set of primitives that
support most any data operation (please see figures 1.and 2.). Thus it is possible to
perform data acquisition with Prograph, the level of complexity however has yet to
be explored.

Dan Shafer, author of several computer related books, and an authority in
Object Oriented Programming, hosts a class in Redwood City, t1 aining users in
Prograph. Topics covered include;

- Introduction to Prograph CPX, and what it is,

- The “Hello World" example in CPX

- The Editor/Interpreter and the application building process
- C.S. and how 00P is implemented in Prograph

- GUI Developement and Documents

- Tips and techniques of debugging

- Primitives, External Primitives, Controls ancl Operations

- Accessing Macintosh OS resources

- Compiling the case study application

The class is over a four day period and exposes the student to other users from various
background and is very hands on. In the time spent there one is able to find out
specific solutions to some of the problems of DAQ using Prograph.

At the end of the class there is an experiment with a case study application (see
figures 3. and 4.). Mr. Shafer is also the author of the only third party text book on
Prograph, “The Power of CPX"D.Shafer 1994.

[Go Back I

[Table of Contents | [Class Hierarchy | %

Project Info:
Clasy Hiersrchy

Sections

Universsls Persistents

Environment Infe:
Primitives Primitives by Catesory
Date Types

Externe) Methods External structures
External Constants Externsl Globals

Externals Info:

Primitive files Definition Files

_ (figure 1. the Prograph CPX info menu)

l Table of Contents l [irehy]

Go ng_{_—"l

[ey

| ;alled-from-set

close-serial-port

configure-sport

salls-to-get cluster-delete copy,
| salls-to-meth cluster-lock cos
1alls-to-set cluster-read count-spor t-input
:hildren cluster-replace create
hoose cluster -undelete create-class
Jass-com cluster-unlock create-method
|DIG-Blk-Check db-close debug
|DIG-BIk-Clear db-compact delete
DIG-BIk-Start db-delete descendants
|DIG-in-Line db-flush detach-1
|DIG-in-Port db-info detach-nth
|DIG-Out-Line db-list detach-r
RIG-Qut-Port db-ne disp

Looiy |
bl =t
L <
had =
H =
2
(length) = =
*
ATP-Close accept asin
| ATP-Get-Request acos ask
ATP-Get-Response address-to-oh _ject atan
ATP-Open ancestors atan2
ATP-Send-Request and attach-1
ATP-Send-Response annuity. attach-r
abort answer attr-com
abort-callback answer-v attributes
abs
yit-and bit-shift-r block-size
rit-not bit-xor boolean?
rit-or block-address. break-serial-port
lit-shift-I
zall class-section clyster-write
:allback classes compact-memory,
;alled-from-get clear-bytes-map compiled?
| :alled-from-meth close compound

(figure 2. primitives list of Prograph CPX)

Conclusion

Creating a GUI and the supporting applications is very easy with Prograph

CPX. Building a GUI simply involves putting the objects available on the palette on
your Edit Application window. Writing code, though not quite as simple as building
the GUI or writing code in Labview, is also fairly easy to accomplish. The difficulties
in Programming in Prograph CPX, lie in understanding the ABC Starter Project
(Prograph’s equivalent of stdio.h), the Apple toolbox, and becoming familiar with the
order and dataflow principles. Some knowledge of OOP principles helps tremendously,
for example, knowing what a Class is, concepts such as Member functions,

olymorphism and Inheritance, : well as Instantiation.

MTC Calculator =
MTC Calculator

B ‘

DHEEE
LDEER
ARSICI0I0
gloioio

off |

m
—

clear

(figure 3.MTC Calculator) (figure 3. Calculator code showing inheritance)

When one does become familiar with Prograply, it is a powerful tool.
Applications like BuildSim (Tangent Systems) or MTC Calculator (case study - MI'C, see
figure 3.), were made using Prograph. Therefore due to the support, it is possible to
build a data acquisition application using Prograph CPX. If there is any C code
involved it can be converted to a Prograph primitive automatically via the CTool or
manually using Xprims. The resulting application will be stand alone program, and
can be delivered to the customer.

CO-OP Presentation: \
Visual Programming and it’s Applications
By ‘
Dr. Ed Baroth .
Amalaye Oyake o \ \ \" NG
3510, MT'C Group S “) S

What is Visual Programming?

There are several definitions:
(@) Visual Programming (VP) refersto any system that allows the
user to specify a program in two-(or more) -dimensiona fashion.
[...] conventional textual languages are not considered two
dimensional since the compilers or interpreters process them as
long, one-dimensional streams. [Myers90a}

(b) A Visua Language manipulates visual information or supports visual
interaction, or allows programming with visual expressions, The latter

is taken to be the definition of avisua programming language.

Visual programming languages may be. further classified according to the
type and extent of visual expression used, into

icon-based languages, form-based languages and diagram languages.

Visual programming environments provide graphical or iconic elements which
can be manipulated by the user in an interactive way according to some
specific spatial grammar for program construction. [Golin90b)

The need to meet deadlines and complete projects has berm a concern for programmers involved; notably projects
involving scientific research, Visual Programming, is quickly becoming the preferred way of meeting project
requirements. Visual programming uses the visual objects to create fully functional programs. These programming
languages, tools, or application modellers attempt to achieve the programming power of languages such as C or
CH+.

Non Visual Programming Languages

Despite their names Visua Basic and the entire line of Miciosoft Visua (tin) family (Visual C++ and the
like), are not visual programming languages. These languages use a (GUI builder, Jayered on top a textual language,
hence tier name.

Commercial Languages Avaijlable Today
Prograph Prograph Int'] 800-927-4847
Serius Developer
PhonePro Cypress Research 408-752-2700
Iconicode
LabVIEW National Instruments 800433-3488
Design/CPN Meta Software 617-576-6920
SystemSpecs Ivy Team, Bern Switz
HP-VEE Hewlett Packard 800-452-4844

Two Languages will be looked at today:
1 Nationa Instruments LabVIEW
2. Prograph International’ s Prograph CPX
L.abVIEW is agraphical programming system designed for data acquisition and control, data analysis, and

data presentation. It can also perform the equivalent operations of textual programining language, e.g. file searches,
printing operations etc.

Prograph is a Visual Object-Oriented, Dataflow Model, Dynamic Programmming and Debugging
Environment. It uses object oriented principles such as classes, inheritance etc., [o create fully functional computer
programs.

Points To Note
Both labVIEW and Prograph can import C code.
LabVIEW places more emphasis on data flow while Prograph is an object oriented product.

Using visual programming languages makes it much easier to port between computer platforms

Both products are demonstrated at the MTC (125 -B32) every Friday, between 9:00am and 12:00pm

Decimal

an example of lab VIEW code an example of Prograph code

